COMPARATIVE STUDY
JOURNAL ARTICLE

Analysis and synthesis of textured motion: particles and waves

Yizhou Wang, Song-Chun Zhu
IEEE Transactions on Pattern Analysis and Machine Intelligence 2004, 26 (10): 1348-63
15641721
Natural scenes contain a wide range of textured motion phenomena which are characterized by the movement of a large amount of particle and wave elements, such as falling snow, wavy water, and dancing grass. In this paper, we present a generative model for representing these motion patterns and study a Markov chain Monte Carlo algorithm for inferring the generative representation from observed video sequences. Our generative model consists of three components. The first is a photometric model which represents an image as a linear superposition of image bases selected from a generic and overcomplete dictionary. The dictionary contains Gabor and LoG bases for point/particle elements and Fourier bases for wave elements. These bases compete to explain the input images and transfer them to a token (base) representation with an O(10(2))-fold dimension reduction. The second component is a geometric model which groups spatially adjacent tokens (bases) and their motion trajectories into a number of moving elements--called "motons." A moton is a deformable template in time-space representing a moving element, such as a falling snowflake or a flying bird. The third component is a dynamic model which characterizes the motion of particles, waves, and their interactions. For example, the motion of particle objects floating in a river, such as leaves and balls, should be coupled with the motion of waves. The trajectories of these moving elements are represented by coupled Markov chains. The dynamic model also includes probabilistic representations for the birth/death (source/sink) of the motons. We adopt a stochastic gradient algorithm for learning and inference. Given an input video sequence, the algorithm iterates two steps: 1) computing the motons and their trajectories by a number of reversible Markov chain jumps, and 2) learning the parameters that govern the geometric deformations and motion dynamics. Novel video sequences are synthesized from the learned models and, by editing the model parameters, we demonstrate the controllability of the generative model.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15641721
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"