JOURNAL ARTICLE

Quince (Cydonia oblonga miller) fruit characterization using principal component analysis

Branca M Silva, Paula B Andrade, Rui C Martins, Patrícia Valentão, Federico Ferreres, Rosa M Seabra, Margarida A Ferreira
Journal of Agricultural and Food Chemistry 2005 January 12, 53 (1): 111-22
15631517
This paper presents a large amount of data on the composition of quince fruit with regard to phenolic compounds, organic acids, and free amino acids. Subsequently, principal component analysis (PCA) is carried out to characterize this fruit. The main purposes of this study were (i) the clarification of the interactions among three factors-quince fruit part, geographical origin of the fruits, and harvesting year-and the phenolic, organic acid, and free amino acid profiles; (ii) the classification of the possible differences; and (iii) the possible correlation among the contents of phenolics, organic acids, and free amino acids in quince fruit. With these aims, quince pulp and peel from nine geographical origins of Portugal, harvested in three consecutive years, for a total of 48 samples, were studied. PCA was performed to assess the relationship among the different components of quince fruit phenolics, organic acids, and free amino acids. Phenolics determination was the most interesting. The difference between pulp and peel phenolic profiles was more apparent during PCA. Two PCs accounted for 81.29% of the total variability, PC1 (74.14%) and PC2 (7.15%). PC1 described the difference between the contents of caffeoylquinic acids (3-O-, 4-O-, and 5-O-caffeoylquinic acids and 3,5-O-dicaffeoylquinic acid) and flavonoids (quercetin 3-galactoside, rutin, kaempferol glycoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, quercetin glycosides acylated with p-coumaric acid, and kaempferol glycosides acylated with p-coumaric acid). PC2 related the content of 4-O-caffeoylquinic acid with the contents of 5-O-caffeoylquinic and 3,5-O-dicaffeoylquinic acids. PCA of phenolic compounds enables a clear distinction between the two parts of the fruit. The data presented herein may serve as a database for the detection of adulteration in quince derivatives.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15631517
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"