RESEARCH SUPPORT, NON-U.S. GOV'T
Cardiovascular magnetic resonance in cardiac amyloidosis.
Circulation 2005 January 19
BACKGROUND: Cardiac amyloidosis can be diagnostically challenging. Cardiovascular magnetic resonance (CMR) can assess abnormal myocardial interstitium.
METHODS AND RESULTS: Late gadolinium enhancement CMR was performed in 30 patients with cardiac amyloidosis. In 22 of these, myocardial gadolinium kinetics with T1 mapping was compared with that in 16 hypertensive controls. One patient had CMR and autopsy only. Subendocardial T1 in amyloid patients was shorter than in controls (at 4 minutes: 427+/-73 versus 579+/-75 ms; P<0.01), was shorter than subepicardium T1 for the first 8 minutes (P< or =0.01), and was correlated with markers of increased myocardial amyloid load, as follows: left ventricular (LV) mass (r=-0.51, P=0.013); wall thickness (r=-0.54 to -0.63, P<0.04); interatrial septal thickness (r=-0.52, P=0.001); and diastolic function (r=-0.42, P=0.025). Global subendocardial late gadolinium enhancement was found in 20 amyloid patients (69%); these patients had greater LV mass (126+/-30 versus 93+/-25 g/m2; P=0.009) than unenhanced patients. Histological quantification showed substantial interstitial expansion with amyloid (30.5%) but only minor fibrosis (1.3%). Amyloid was dominantly subendocardial (42%) compared with midwall (29%) and subepicardium (18%). There was 97% concordance in diagnosis of cardiac amyloid by combining the presence of late gadolinium enhancement and an optimized T1 threshold (191 ms at 4 minutes) between myocardium and blood.
CONCLUSIONS: In cardiac amyloidosis, CMR shows a characteristic pattern of global subendocardial late enhancement coupled with abnormal myocardial and blood-pool gadolinium kinetics. The findings agree with the transmural histological distribution of amyloid protein and the cardiac amyloid load and may prove to have value in diagnosis and treatment follow-up.
METHODS AND RESULTS: Late gadolinium enhancement CMR was performed in 30 patients with cardiac amyloidosis. In 22 of these, myocardial gadolinium kinetics with T1 mapping was compared with that in 16 hypertensive controls. One patient had CMR and autopsy only. Subendocardial T1 in amyloid patients was shorter than in controls (at 4 minutes: 427+/-73 versus 579+/-75 ms; P<0.01), was shorter than subepicardium T1 for the first 8 minutes (P< or =0.01), and was correlated with markers of increased myocardial amyloid load, as follows: left ventricular (LV) mass (r=-0.51, P=0.013); wall thickness (r=-0.54 to -0.63, P<0.04); interatrial septal thickness (r=-0.52, P=0.001); and diastolic function (r=-0.42, P=0.025). Global subendocardial late gadolinium enhancement was found in 20 amyloid patients (69%); these patients had greater LV mass (126+/-30 versus 93+/-25 g/m2; P=0.009) than unenhanced patients. Histological quantification showed substantial interstitial expansion with amyloid (30.5%) but only minor fibrosis (1.3%). Amyloid was dominantly subendocardial (42%) compared with midwall (29%) and subepicardium (18%). There was 97% concordance in diagnosis of cardiac amyloid by combining the presence of late gadolinium enhancement and an optimized T1 threshold (191 ms at 4 minutes) between myocardium and blood.
CONCLUSIONS: In cardiac amyloidosis, CMR shows a characteristic pattern of global subendocardial late enhancement coupled with abnormal myocardial and blood-pool gadolinium kinetics. The findings agree with the transmural histological distribution of amyloid protein and the cardiac amyloid load and may prove to have value in diagnosis and treatment follow-up.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app