RAMP2 and RAMP3 mRNA levels are increased in failing rat cardiomyocytes and associated with increased responsiveness to adrenomedullin

Erik Øie, Leif Erik Vinge, Geir Øystein Andersen, Arne Yndestad, Kurt A Krobert, Cecilie Sandberg, Mohammed Shakil Ahmed, Terje Haug, Finn Olav Levy, Tor Skomedal, Håvard Attramadal
Journal of Molecular and Cellular Cardiology 2005, 38 (1): 145-51
Adrenomedullin (AM) is a potent vasorelaxing peptide with natriuretic and diuretic actions. Recent data indicate that AM may function as an endogenous regulator of cardiac function. We investigated to what extent AM, the AM receptor subtypes, and AM receptor-associated proteins were regulated in cardiomyocytes and non-cardiomyocytes of rats with congestive heart failure (CHF), and whether such regulation was paralleled by corresponding alterations of functional responses to AM. Cardiomyocytes and non-cardiomyocytes were isolated from myocardial tissue of rats 7 days after induction of myocardial infarction or sham operation. AM immunoreactivity was found in cardiomyocytes, endothelial cells, and fibroblasts. Robust increase of AM mRNA levels was observed both in the cardiomyocytes and in the non-cardiomyocytes of CHF rats compared to that of sham-operated rats (2.7-fold and 3.7-fold, respectively, P <0.05). Fairly high mRNA levels and immunoreactivity against the AM receptor chaperone receptor activity-modifying protein-2 (RAMP2) were also detected in the cardiomyocytes and non-cardiomyocytes. However, induction of RAMP2 mRNA expression was restricted to cardiomyocytes (1.8-fold increase in cardiomyocytes from CHF rats vs. sham rats; P <0.05). In contrast, very low levels of RAMP3 mRNA were observed. RAMP3 mRNA levels, however, were elevated in both cardiomyocytes and non-cardiomyocytes from CHF rats (6.5-fold and 2.4-fold increase vs. sham rats, respectively; P <0.05). Parallel increases of specific AM receptor binding sites and of AM-stimulated adenylyl cyclase activities were observed in failing cardiomyocytes compared to cardiomyocytes from sham rats (fivefold and sixfold increase, respectively; P <0.05). Thus, this study demonstrates that AM mRNA levels, AM receptor binding sites, and AM-stimulated adenylyl cyclase activities are increased in cardiomyocytes from failing rat hearts. Furthermore, our data suggest that induction of RAMP2 and RAMP3 contributes to the increased responsiveness to AM in failing cardiomyocytes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"