Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of 3,4-dihydroxyphenylalanine on Cu(2+)-induced inactivation of HDL-associated paraoxonasel and oxidation of HDL; inactivation of paraoxonasel activity independent of HDL lipid oxidation.

Free Radical Research 2004 September
Paraoxonasel (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu(2+)-mediated inactivation of PON1 was examined. Cu(2+)-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu(2+)-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu(2+)-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu(2+)-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 microM) acted as a pro-oxidant by enhancing Cu(2+)-induced oxidation of HDL, while it exhibited an antioxidant action at > or = 10 microM. In addition, Cu(2+)-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu(2+)-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 microM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 microM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu(2+)-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app