JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of surfactant alkyl chain length on soil cadmium desorption using surfactant/ligand systems.

Chemosphere 2005 Februrary
The effect of surfactant alkyl chain length on soil Cd desorption was studied using nonionic surfactants of polyethylene oxide (PEO) of PEO chain lengths of 7.5 (Triton X-114), 9.5 (Triton X-100), 30 (Triton X-305), or 40 units (Triton X-405) in combination with the I- ligand. Triplicate 1 g soil samples were equilibrated with 15 ml of surfactant-ligand mixture, at concentrations of 0.025, 0.50 or 0.10, and 0.0, 0.168 or 0.336 mol/l, respectively. After shaking the samples for 24 h, the supernatant fraction was analyzed for Cd content to determine the percent of Cd desorbed from the soil. After five successive washings, 53%, 40% and 25% of Cd had been desorbed by 0.025, 0.050 or 0.10 mol/l of Triton X-114, respectively, in the presence of 0.336 mol/l of I-, whereas with the same conditions, Triton X-100 desorbed 61%, 57% and 56% Cd and either Triton X-305 or Triton X-405 desorbed 51, 40 and 14 to 16% Cd. The most efficient Cd desorption was obtained using 0.025 mol/l Triton X-100 in admixture with 0.336 mol/l I-. Increased surfactant concentration was detrimental to Cd desorption consistent with a process that blocked ligand access to the soil particle surface. After 5 washings,the cumulative cadmium desorption decreased with increasing surfactant alkyl chain length, indicating that the metal-ligand complexes are preferably stabilized by the micelles' hydrophobic octyl phenyl (OP) group rather than by the hydrophilic PEO group. In the absence of ligand, the surfactants alone desorbed less than 1% Cd from the contaminated soil, suggesting that the ligand, rather than the surfactant, extracts the metal, to be subsequently stabilized within the surfactant micelles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app