T-S model based indirect adaptive fuzzy control using online parameter estimation

Chang-Woo Park, Young-Wan Cho
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 2004, 34 (6): 2293-302
A parameter estimation scheme with an appropriate adaptive law for updating the parameters is designed and analyzed based on the Lyapunov theory for the general MIMO Takagi-Sugeno (T-S) fuzzy models. The parameters of the Takagi-Sugeno fuzzy models can be estimated by observing the behavior of the system and with the online parameter estimator, any type of fuzzy controllers works adaptively to the parameter perturbation. In order to show the applicability of the proposed estimator, an existing fuzzy state feedback controller is adopted and indirect adaptive fuzzy control design with the proposed estimator is shown. From the numerical simulations and experiments, it is shown that the derived adaptive law works for the estimation model to follows the parameterized plant model and the overall control system has robustness to the parameter perturbation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"