Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Coaxing a pyridine nucleus to give up its aromaticity: synthesis and pharmacological characterization of novel conformationally restricted analogues of nicotine and anabasine.

A series of novel nicotine and anabasine related conformationally restricted compounds including those with pi-bonds in the connecting tether were synthesized following the hitherto unprecedented phenylsulfanyl group assisted generation of pyridine o-quinodimethane intermediates and their trapping by an intramolecular Diels-Alder reaction. Pharmacological characterization of some of these analogues at activating alpha3beta4 nAChRs was investigated, and constrained anabasine analogues 35 and 43 as well as constrained nicotine analogue 42 were found to exhibit moderately potent nicotinic agonist activity. Of special note is the fact that the pyrrolidinic nitrogen in these compounds is bound to a carbomethoxy group and, therefore, is not free to be protonated unlike all the known analogues of nicotine and anabasine, specifically designed as nAChRs agonists/antagonists. The structure-activity relationship studies indicate that when pi-cation interaction is absent, the position of chlorine atom in the pyridine ring and steric bulk at the connecting tether between the pyridine and pyrrolidine ring of the constrained nicotinic ligands are important descriptors for their binding affinity at alpha4beta2 and alpha3beta4 nAChRs as well as the subtype selectivity issue. These findings are likely to improve our understanding of the structural requirements for selectivity, which, at present, is probably the most important goal in the field of nicotinic ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app