JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Phosphorylation of Plk1 at S137 and T210 is inhibited in response to DNA damage.

Cell Cycle 2005 January
Polo-like kinase 1 (Plk1) regulates multiple processes during mitosis. Plk1 is activated by phosphorylation at the G2/M phase boundary. Active Plk1 is involved in promotion of mitotic entry through activation of Cdc25C, and through nuclear import of cyclin B1 that together activate Cdc2/cyclin B kinase. In earlier work, phosphopeptide mapping identified several phosphorylation sites in Plk1. Mutational analysis pinpointed threonine 210, which is located in the activation loop of the kinase domain, as the major activation site of Plk1. In response to DNA damage, ATM/ATR-dependent checkpoint pathways inhibit Plk1 activity. Insensitivity of Plk1T210D, a constitutively active mutant, to DNA damage-induced inhibition of Plk1 indicates that regulation of Plk1 phosphorylation is a potential target of DNA damage checkpoints. In the present paper, we report that in vivo phosphorylation of Plk1 at serine 137 (S137) and threonine 210 (T210) occurs in mitosis. DNA damage prevents phosphorylation of Plk1 at both S137 and T210 in asynchronous cells but not in mitotic cells. Inhibitors of ATM/ATR and Chk1/Chk2 protein kinases avert the inhibition of Plk1 phosphorylation in response to DNA damage. These data suggest a participation of DNA damage checkpoints in regulation of the signaling pathways upstream of Plk1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app