Clinical Trial
Controlled Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Relationship between lesion size and signal enhancement on subtraction fat-suppressed MR imaging of the breast.

OBJECTIVE: To investigate the relationship between size and whole lesion enhancement of breast neoplasms.

MATERIALS AND METHODS: Fat-suppressed subtraction MRI was performed in 94 breast lesions (44 malignant, 50 benign) with pathologically confirmed diagnoses. Of these, all malignant lesions and 31 of the 50 benign lesions showed enhancement. The degree of enhancement was quantified by using an ROI tracing around the whole lesion and calculated as the percentage increase in signal intensity between the corresponding precontrast and postcontrast images.

RESULTS: The 44 malignant lesions showed enhancement percentage of 38.3% to 186.4% (mean 109.9%), and the 31 benign lesions showed enhancement percentage of 12.8% to 180.2% (mean 79.5%). The difference is statistically significant (P = .002). In 54 small lesions (28 malignant, 26 benign) with enhancing pixel areas of <300 mm(2) corresponding to a diameter of approximately 19.5 mm, an enhancement exceeding 75% of baseline separated malignant lesions (mean enhancement 116.7%) from benign ones (mean enhancement 72.8%) (P = .0001). This gave a sensitivity of 100% and a specificity of 69%, a positive predictive value of 78%, negative predictive value of 100% and an accuracy of 85% in using >75% enhancement increase in detecting malignancy in small (<300 mm(2)) enhancing lesions.

CONCLUSION: The high sensitivity in the detection of small malignant lesions suggests a potential for the method to be used in assessment of small enhancing breast lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app