JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A role of OsGA20ox1 , encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice.

Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativa L.), OsGA20ox2 ( SD1 ), is well known as the "Green Revolution gene", and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1 . The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app