Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dual role of carcinoembryonic antigen-related cell adhesion molecule 1 in angiogenesis and invasion of human urinary bladder cancer.

Cancer Research 2004 December 16
Here, we show that carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in umbrella cells of bladder urothelium but is down-regulated in superficial bladder cancer, such as histologic tumor stage a (pTa) and transitional cell carcinoma in situ (pTis). Concurrently, CEACAM1 is up-regulated in the endothelia of adjacent angiogenic blood vessels. Mimicking the CEACAM1 down-regulation in the urothelium, CEACAM1 was silenced in bladder cancer cell lines 486p and RT4 using the small interfering RNA technique. CEACAM1 down-regulation was confirmed at the protein level by Western blot analyses. CEACAM1 silencing leads to a significant up-regulation of vascular endothelial growth factor (VEGF)-C and VEGF-D in quantitative reverse transcription-PCR. Correspondingly, supernatants from the CEACAM1-overexpressing bladder cancer cell lines reduce, but those from CEACAM1 silencing induce endothelial tube formation and potentiate the morphogenetic effects of VEGF. These data suggest that the epithelial down-regulation of CEACAM1 induces angiogenesis via increased expression of VEGF-C and VEGF-D. Inversely, CEACAM1 is up-regulated in endothelial cells of angiogenic blood vessels. This in turn is involved in the switch from noninvasive and nonvascularized to invasive and vascularized bladder cancer. CEACAM1 appears to be a promising endothelial target for bladder cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app