JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An explanation of contextual modulation by short-range isotropic connections and orientation map geometry in the primary visual cortex.

Recent experimental studies on the primary visual cortex have revealed complicated nonclassical neuronal activities. Contextual modulation on orientation-contrast is one typical example of nonclassical neuronal behavior. This modulation by surrounding stimuli in a nonclassical receptive field is mainly thought to be mediated by short- and long-range horizontal connections within the primary visual cortex. Short-range connections are circularly symmetrical and relatively independent of orientation preferences, while long-range connections are patchy, asymmetrical, and orientation specific. Although this modulation can be explained by long-range specific connections qualitatively, recent studies suggest that long-range connections alone may be insufficient with respect to the balance between two types of connections. Here, in order to clarify the role of short-range connections in the process of contextual modulation, we propose a model of the primary visual cortex with isotropic short-range connections and a geometric orientation map. Computational simulations using the model have demonstrated that contextual modulation can be explained by short-range connections alone. This is due to the interaction between the spatial periodicity of orientation domains and the excitatory-inhibitory regions arising from the propagation of activities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app