JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification of a SulP-type bicarbonate transporter in marine cyanobacteria.

Cyanobacteria possess a highly effective CO(2)-concentrating mechanism that elevates CO(2) concentrations around the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase). This CO(2)-concentrating mechanism incorporates light-dependent, active uptake systems for CO(2) and HCO(-)(3). Through mutant studies in a coastal marine cyanobacterium, Synechococcus sp. strain PCC7002, we identified bicA as a gene that encodes a class of HCO(-)(3) transporter with relatively low transport affinity, but high flux rate. BicA is widely represented in genomes of oceanic cyanobacteria and belongs to a large family of eukaryotic and prokaryotic transporters presently annotated as sulfate transporters or permeases in many bacteria (SulP family). Further gain-of-function experiments in the freshwater cyanobacterium Synechococcus PCC7942 revealed that bicA expression alone is sufficient to confer a Na(+)-dependent, HCO(3)(-) uptake activity. We identified and characterized three cyanobacterial BicA transporters in this manner, including one from the ecologically important oceanic strain, Synechococcus WH8102. This study presents functional data concerning prokaryotic members of the SulP transporter family and represents a previously uncharacterized transport function for the family. The discovery of BicA has significant implications for understanding the important contribution of oceanic strains of cyanobacteria to global CO(2) sequestration processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app