We have located links that may give you full text access.
Journal Article
Review
Carnitine deficiency disorders in children.
Annals of the New York Academy of Sciences 2004 November
Mitochondrial oxidation of long-chain fatty acids provides an important source of energy for the heart as well as for skeletal muscle during prolonged aerobic work and for hepatic ketogenesis during long-term fasting. The carnitine shuttle is responsible for transferring long-chain fatty acids across the barrier of the inner mitochondrial membrane to gain access to the enzymes of beta-oxidation. The shuttle consists of three enzymes (carnitine palmitoyltransferase 1, carnitine acylcarnitine translocase, carnitine palmitoyl-transferase 2) and a small, soluble molecule, carnitine, to transport fatty acids as their long-chain fatty acylcarnitine esters. Carnitine is provided in the diet (animal protein) and also synthesized at low rates from trimethyl-lysine residues generated during protein catabolism. Carnitine turnover rates (300-500 micromol/day) are <1% of body stores; 98% of carnitine stores are intracellular (total carnitine levels are 40-50 microM in plasma vs. 2-3 mM in tissue). Carnitine is removed by urinary excretion after reabsorption of 98% of the filtered load; the renal carnitine threshold determines plasma concentrations and total body carnitine stores. Because of its key role in fatty acid oxidation, there has long been interest in the possibility that carnitine might be of benefit in genetic or acquired disorders of energy production to improve fatty acid oxidation, to remove accumulated toxic fatty acyl-CoA metabolites, or to restore the balance between free and acyl-CoA. Two disorders have been described in children where the supply of carnitine becomes limiting for fatty acid oxidation: (1) A recessive defect of the muscle/kidney sodium-dependent, plasma membrane carnitine symporter, which presents in infancy with cardiomyopathy or hypoketotic hypoglycemia; treatment with oral carnitine is required for survival. (2) Chronic administration of pivalate-conjugated antibiotics in which excretion of pivaloyl-carnitine can lead to carnitine depletion; tissue levels may become low enough to limit fatty acid oxidation, although no cases of illness due to carnitine deficiency have been described. There is speculation that carnitine supplements might be beneficial in other settings (such as genetic acyl-CoA oxidation defects--"secondary carnitine deficiency", chronic ischemia, hyperalimentation, nutritional carnitine deficiency), but efficacy has not been documented. The formation of abnormal acylcarnitines has been helpful in expanded newborn screening programs using tandem mass-spectrometry of blood spot acylcarnitine profiles to detect genetic fatty acid oxidation defects in neonates. Carnitine-deficient diets (vegetarian) do not have much effect on carnitine pools in adults. A modest 50% reduction in carnitine levels is associated with hyperalimentation in newborn infants, but is of doubtful significance. The above considerations indicate that carnitine does not become rate-limiting unless extremely low; testing the benefits of nutritional supplements may require invasive endurance studies of fasting ketogenesis or muscle and cardiovascular work.
Full text links
Related Resources
Trending Papers
Hyperkalemia management: a multidisciplinary expert panel's perspective on the role of new potassium binders.Heart Failure Reviews 2024 November 27
Septic shock in the immunocompromised cancer patient: a narrative review.Critical Care : the Official Journal of the Critical Care Forum 2024 August 30
Guidelines for the Prevention, Diagnosis, and Management of Urinary Tract Infections in Pediatrics and Adults: A WikiGuidelines Group Consensus Statement.JAMA Network Open 2024 November 4
The Management of Interstitial Lung Disease in the ICU: A Comprehensive Review.Journal of Clinical Medicine 2024 November 6
Cardiac Failure and Cardiogenic Shock: Insights Into Pathophysiology, Classification, and Hemodynamic Assessment.Curēus 2024 October
Proteinuria and Progression of Renal Damage: The Main Pathogenetic Mechanisms and Pharmacological Approach.Medicina 2024 November 6
New strategies for the treatment of hyperkalemia.European Journal of Internal Medicine 2024 November 2
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app