COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum.

Epithelial mesenchymal transition (EMT), a process involved in many growth and repair functions, has been identified in the peritoneal tissues of patients who undergo peritoneal dialysis. The sequence of changes in gene regulation and cellular events associated with EMT after TGF-beta1-induced peritoneal fibrosis is reported. Sprague-Dawley rats received an intraperitoneal injection of an adenovirus vector that transfers active TGF-beta1 (AdTGF-beta1) or control adenovirus, AdDL. Animals were killed 0 to 21 days after infection. Peritoneal effluent and tissue were analyzed for markers of EMT. In the animals that were treated with AdTGF-beta1, an increase in expression of genes associated with EMT and fibrosis, such as type I collagen A2, alpha-smooth muscle actin, and the zinc finger regulatory protein Snail, was identified. Transition of mesothelial cells 4 to 7 d after infection, with appearance of epithelial cells in the submesothelial zone 7 to 14 d after exposure to AdTGF-beta1, was demonstrated. This phase was associated with disruption of the basement membrane and increased expression of matrix metalloproteinase 2. By 14 to 21 d after infection, there was evidence of restoration of normal submesothelial architecture. These findings suggest that EMT occurs in vivo after TGF-beta1 overexpression in the peritoneum. Cellular changes and gene regulation associated with EMT are evident throughout the fibrogenic process and are not limited to early time points. This further supports the central role of TGF-beta1 in peritoneal fibrosis and provides an important model to study the sequence of events involved in TGF-beta1-induced EMT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app