Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of an enhancer that controls up-regulation of fibronectin during differentiation of embryonic stem cells into extraembryonic endoderm.

The extraembryonic endoderm is derived from inner cell mass cells of the blastocyst during early mouse embryogenesis. Formation of the extraembryonic endoderm, which later contributes to the yolk sac, appears to be a prerequisite for subsequent differentiation of the inner cell mass. While embryonic stem cells can be induced to differentiate into extraembryonic endoderm cells in vitro, the molecular mechanisms underlying this process are poorly understood. We used a promoter trap approach to search for genes that are expressed in embryonic stem cells and are highly up-regulated during differentiation to the extraembryonic endoderm fate. We showed that fibronectin fits this expression profile. Moreover we identified an enhancer in the 12th intron of the fibronectin locus that recapitulated the endogenous pattern of fibronectin expression. This enhancer carries Sox protein-binding sequences, and our analysis demonstrated that Sox7 and Sox17, which are highly expressed in the extraembryonic endoderm, were involved in enhancer activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app