JOURNAL ARTICLE

Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity

Linda A deGraffenried, William E Friedrichs, Douglas H Russell, Elissa J Donzis, Amanda K Middleton, Jessica M Silva, Richard A Roth, Manuel Hidalgo
Clinical Cancer Research 2004 December 1, 10 (23): 8059-67
15585641
The Akt kinase is a serine/threonine protein kinase that has been implicated in mediating a variety of biological responses. Studies show that high Akt activity in breast carcinoma is associated with a poor pathophenotype, as well as hormone and chemotherapy resistance. Additionally, high Akt activity is associated with other features of poor prognosis. Thus, a chemotherapeutic agent directed specifically toward tumors with high Akt activity could prove extremely potent in treating those breast tumors with the most aggressive phenotypes. Several studies have demonstrated that rapamycin, which inhibits mammalian target of rapamycin (mTOR), a downstream target of Akt, sensitizes certain resistant cancer cells to chemotherapeutic agents. This study evaluated the efficacy of mTOR inhibition in the treatment of tamoxifen-resistant breast carcinoma characterized by high Akt activity. We found that MCF-7 breast cancer cell lines expressing a constitutively active Akt are able to proliferate under reduced estrogen conditions and are resistant to the growth inhibitory effects of tamoxifen, both in vitro as well as in vivo in xenograft models. Cotreatment with the mTOR inhibitor rapamycin in vitro, or the ester of rapamycin, CCI-779 (Wyeth) in vivo, inhibited mTOR activity and restored sensitivity to tamoxifen, suggesting that Akt-induced tamoxifen resistance is mediated in part by signaling through the mTOR pathway. Although the mechanism underlying the synergism remains to be understood, the results were associated with rapamycin's ability to block transcriptional activity mediated by estrogen receptor alpha, as assessed by reporter gene assays with estrogen-responsive element luciferase. These data corroborate prior findings indicating that Akt activation induces resistance to tamoxifen in breast cancer cells. Importantly, these data indicate a novel mechanism for tamoxifen resistance and suggest that blockage of the phosphatidylinositol 3'-kinase/Akt signaling pathway by mTOR inhibition effectively restores the susceptibility of these cells to tamoxifen. These data may have implication for future clinical studies of mTOR inhibition in breast carcinoma.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15585641
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"