JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multiple mutations in human immunodeficiency virus-1 integrase confer resistance to the clinical trial drug S-1360.

AIDS 2004 October 22
OBJECTIVES: Study of HIV-1 resistance development to the diketo analogue S-1360, the first HIV-1 integrase strand transfer inhibitor that has entered clinical development.

DESIGN: HIV-1(IIIB) was passaged in cell culture in the presence of increasing concentrations of S-1360 (IIIB/S-1360(res)).

METHODS: The IIIB/S-1360(res) strains selected for 30, 50 and 70 passages in the presence of S-1360 were evaluated genotypically by sequencing analysis and phenotypically using the MT-4/MTT assay.

RESULTS: Multiple mutations, nine in total, emerged progressively in the catalytic domain of integrase as a result of the selection process. They included T66I and L74M that have both been associated with resistance against the diketo acid L-708,906. After 30, 50 and 70 passages in the presence of S-1360, IIIB/S-1360(res) displayed a four-, eight- and more than 62-fold reduced susceptibility for S-1360, respectively. Phenotypic cross-resistance to L-708,906 was modest for the IIIB/S-1360(res) strain selected during 50 passages, but pronounced for the strain selected during 70 passages. Interesting, all IIIB/S-1360(res) strains remained fully susceptible to the pyranodipyrimidine V-165, an integrase DNA binding inhibitor. Recombination of the mutant integrase genes into wild-type background by integrase-chimeric virus technology entirely reproduced the resistance profile of the IIIB/S-1360(res) strains. As for the replication kinetics of the selected and recombined strains, reduced replication fitness was measured for all strains when compared with their respective wild-type strains.

CONCLUSIONS: The accumulation of integrase mutations coincided with an increasing level of (cross-)resistance of IIIB/S-1360(res). Integrase-chimeric virus technology confirmed that the integrase mutations are indeed fully responsible for the resistance phenotype of IIIB/S-1360.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app