CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Disrupted coordinate regulation of farnesoid X receptor target genes in a patient with cerebrotendinous xanthomatosis.

Cerebrotendinous xanthomatosis (CTX), sterol 27-hydroxylase (CYP27A1) deficiency, is associated with markedly reduced chenodeoxycholic acid (CDCA), the most powerful activating ligand for farnesoid X receptor (FXR). We investigated the effects of reduced CDCA on FXR target genes in humans. Liver specimens from an untreated CTX patient and 10 control subjects were studied. In the patient, hepatic CDCA concentration was markedly reduced but the bile alcohol level exceeded CDCA levels in control subjects (73.5 vs. 37.8 +/- 6.2 nmol/g liver). Cholesterol 7alpha-hydroxylase (CYP7A1) and Na+/taurocholate-cotransporting polypeptide (NTCP) were upregulated 84- and 8-fold, respectively. However, small heterodimer partner (SHP) and bile salt export pump were normally expressed. Marked CYP7A1 induction with normal SHP expression was not explained by the regulation of liver X receptor alpha (LXRalpha) or pregnane X receptor. However, another nuclear receptor, hepatocyte nuclear factor 4alpha (HNF4alpha), was induced 2.9-fold in CTX, which was associated with enhanced mRNA levels of HNF4alpha target genes, CYP7A1, 7alpha-hydroxy-4-cholesten-3-one 12alpha-hydroxylase, CYP27A1, and NTCP. In conclusion, the coordinate regulation of FXR target genes was lost in CTX. The mechanism of the disruption may be explained by a normally stimulated FXR pathway attributable to markedly increased bile alcohols with activation of HNF4alpha caused by reduced bile acids in CTX liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app