In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Time course of flow-induced vasodilation in skeletal muscle: contributions of dilator and constrictor mechanisms.

The purpose of this study was to determine the time course of flow-induced vasodilation in soleus and gastrocnemius muscle arterioles and the mechanisms that underlie vasodilatory responses to an increase in intraluminal flow. Vasodilation was assessed during 20 min of continuous exposure to intraluminal flow. Both soleus and gastrocnemius muscle arterioles dilated in response to flow, although the magnitude of vasodilation was greater in arterioles from the gastrocnemius muscle. Neither blockade of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester (L-NAME) nor blockade of cyclooxygenase with indomethacin inhibited the initial vasodilation (0-2 min) in arterioles from either muscle. In contrast, vasodilation to sustained exposure to flow (2-20 min) was eliminated by treatment with L-NAME in arterioles from both muscles. Both depolarization with 40 mM KCl and blockade of Ca(2+)-activated K(+) channels inhibited the initial flow-induced dilation, and the inhibition was greater in gastrocnemius muscle arterioles than soleus muscle arterioles. In the presence of L-NAME, prolonged exposure to flow resulted in constriction in soleus and gastrocnemius muscle arterioles. This constriction was abolished by endothelin receptor blockade. These results indicate that the time course and magnitude of flow-induced vasodilation differs between arterioles from soleus and gastrocnemius muscles. The immediate response to increased flow is greater in gastrocnemius muscle arterioles and involves activation of K(+) channels. In arterioles from both soleus and gastrocnemius muscles, vasodilation to sustained flow exposure occurs primarily through production of nitric oxide. In the absence of nitric oxide, sustained exposure to flow results in pronounced constriction that is mediated by endothelin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app