JOURNAL ARTICLE

Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo

Tatiana Syrovets, Jürgen E Gschwend, Berthold Büchele, Yves Laumonnier, Waltraud Zugmaier, Felicitas Genze, Thomas Simmet
Journal of Biological Chemistry 2005 February 18, 280 (7): 6170-80
15576374
Signaling through NF-kappaB has been implicated in the malignant phenotype as well as the chemoresistance of various cancers. Here we show that the natural compounds acetyl-beta-boswellic acid and acetyl-11-keto-beta-boswellic acid (AKbetaBA) inhibit proliferation and elicit cell death in chemoresistant androgen-independent PC-3 prostate cancer cells in vitro and in vivo. Induction of apoptosis was demonstrated in cultured PC-3 cells by several parameters including mitochondrial cytochrome c release and DNA fragmentation. At the molecular level these compounds inhibit constitutively activated NF-kappaB signaling by intercepting the IkappaB kinase (IKK) activity; signaling through the interferon-stimulated response element remained unaffected, suggesting specificity for IKK inhibition. The impaired phosphorylation of p65 and the reduced nuclear translocation of NF-kappaB proteins were associated with down-regulation of the constitutively overexpressed and NF-kappaB-dependent antiapoptotic proteins Bcl-2 and Bcl-x(L). In addition, expression of cyclin D1, a crucial cell cycle regulator, was reduced as well. Down-regulation of IKK by antisense oligodeoxynucleotides confirmed the essential role of IKK inhibition for the proliferation of the PC-3 cells. Both compounds tested were active in vivo, yet AKbetaBA proved to be far superior. Indeed, topical application of water-soluble AKbetaBA-gamma-cyclodextrin on PC-3 tumors xenografted onto chick chorioallantoic membranes induced concentration-dependent inhibition of proliferation as well as apoptosis. Similarly, in nude mice carrying PC-3 tumors, systemic application of AKbetaBA-gamma-cyclodextrin inhibited tumor growth and triggered apoptosis in the absence of detectable systemic toxicity. Thus, AKbetaBA and related compounds acting on IKK might provide a novel approach for the treatment of chemoresistant human tumors such as androgen-independent human prostate cancers.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15576374
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"