JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells.

Human Molecular Genetics 2005 January 16
Mutations in the gene encoding fukutin-related protein (FKRP) cause a spectrum of diseases including congenital muscular dystrophy type 1C (MDC1C), limb girdle muscular dystrophy 2I (LGMD2I) and congenital muscular dystrophies (CMDs) with brain malformations and mental retardation. Although these diseases are associated with abnormal dystroglycan processing, the cellular consequences of the idiosyncratic FKRP mutations have not been determined. Here we show, in cultured cells, that FKRP mutants associated with the more severe disease phenotypes (S221R, A455D, P448L) are retained in the endoplasmic reticulum (ER), whereas the wild-type protein and the mutant L276I that causes LGMD2I are found predominantly in the Golgi apparatus. The ER-retained proteins have a shorter half-life than the wild-type FKRP and are preferentially degraded by the proteasome. Furthermore, calnexin binds preferentially to the ER-retained mutants suggesting that it may participate in the quality control pathway for FKRP. These data provide the first evidence that the ER-retention of mutant FKRP may play a role in the pathogenesis of CMD and potentially explain why the allelic disorder LGMD2I is milder, because the mutated protein is able to reach the Golgi apparatus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app