COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity.

Journal of Cell Science 2004 December 16
The mammalian homologues of yeast and Drosophila Fzo, mitofusin (Mfn) 1 and 2, are both essential for mitochondrial fusion and maintenance of mitochondrial morphology. Though the GTPase domain is required for Mfn protein function, the molecular mechanisms of the GTPase-dependent reaction as well as the functional division of the two Mfn proteins are unknown. To examine the function of Mfn proteins, tethering of mitochondrial membranes was measured in vitro by fluorescence microscopy using green fluorescence protein- or red fluorescent protein-tagged and Mfn1-expressing mitochondria, or by immunoprecipitation using mitochondria harboring HA- or FLAG-tagged Mfn proteins. These experiments revealed that Mfn1-harboring mitochondria were efficiently tethered in a GTP-dependent manner, whereas Mfn2-harboring mitochondria were tethered with only low efficiency. Sucrose density gradient centrifugation followed by co-immunoprecipitation revealed that Mfn1 produced oligomerized approximately 250 kDa and approximately 450 kDa complexes in a GTP-dependent manner. The approximately 450 kDa complex contained oligomerized Mfn1 from distinct apposing membranes (docking complex), whereas the approximately 250 kDa complex was composed of Mfn1 present on the same membrane or in the membrane-solubilized state (cis complex). These results were also confirmed using blue-native PAGE. Mfn1 exhibited higher activity for this reaction than Mfn2. Purified recombinant Mfn1 exhibited approximately eightfold higher GTPase activity than Mfn2. These findings indicate that the two Mfn proteins have distinct activities, and suggest that Mfn1 is mainly responsible for GTP-dependent membrane tethering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app