Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system.

Sequence retrieval from single bands of polymerase chain reaction (PCR)-denaturing gel electrophoresis (DGE) profiles is an important but often difficult step for molecular diversity analysis of complex microbial communities such as activated sludge systems. We analyzed the temperature gradient gel electrophoresis (TGGE) profiles of PCR-amplified 16S rDNA fragments from an activated sludge sample of a coking wastewater treatment plant. Single bands were excised, and a clone library was constructed for each. Sequence heterogeneity in each single band was found to be significantly overestimated due to single-stranded DNA (ssDNA) contamination formed during the PCR amplification, since only 10-60% of library clones of each single TGGE band had identical migration behavior compared with the parent band. Three methods, digestion with mung bean nuclease, optimization of PCR amplification, and purification via denatured polyacrylamide gel electrophoresis (d-PAGE), were compared for their ability to minimize ssDNA contamination, with the last one being the most efficient. After using d-PAGE to minimize ssDNA to a nearly nondetectable level, 70-100% of library clones for each single TGGE band had identical migration compared with the parent band. Several sequences were found in each of six single bands, and this co-migration could be predicted with the Poland software. The predominant bacteria of the activated sludge were assessed via a combination of sequence retrieval from each single TGGE band and band intensity analysis. Only beta and alpha subclasses of the Proteobacteria were detected, 93.8% and 6.2%, respectively. Our work suggests that prior to constructing a clone library to retrieve the actual sequence diversity of a single DGE band, it is advisable to minimize ssDNA contamination to a nondetectable level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app