JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A humid climate state during the Palaeocene/Eocene thermal maximum.

Nature 2004 November 26
An abrupt climate warming of 5 to 10 degrees C during the Palaeocene/Eocene boundary thermal maximum (PETM) 55 Myr ago is linked to the catastrophic release of approximately 1,050-2,100 Gt of carbon from sea-floor methane hydrate reservoirs. Although atmospheric methane, and the carbon dioxide derived from its oxidation, probably contributed to PETM warming, neither the magnitude nor the timing of the climate change is consistent with direct greenhouse forcing by the carbon derived from methane hydrate. Here we demonstrate significant differences between marine and terrestrial carbon isotope records spanning the PETM. We use models of key carbon cycle processes to identify the cause of these differences. Our results provide evidence for a previously unrecognized discrete shift in the state of the climate system during the PETM, characterized by large increases in mid-latitude tropospheric humidity and enhanced cycling of carbon through terrestrial ecosystems. A more humid atmosphere helps to explain PETM temperatures, but the ultimate mechanisms underlying the shift remain unknown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app