Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes.

Although recent studies focused on the contribution of mitochondrial Ca2+ to the mechanisms of ischemia-reperfusion injury, the regulation of mitochondrial Ca2+ under pathophysiological conditions remains largely unclear. By using saponin-permeabilized rat myocytes, we measured mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial Ca2+ concentration ([Ca2+](m)) at the physiological range of cytosolic Ca2+ concentration ([Ca2+](c); 300 nM) and investigated the regulation of [Ca2+](m) during both normal and dissipated DeltaPsi(m). When DeltaPsi(m) was partially depolarized by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP, 0.01-0.1 microM), there were dose-dependent decreases in [Ca2+](m). When complete DeltaPsi(m) dissipation was achieved by FCCP (0.3-1 microM), [Ca2+](m) remained at one-half of the control level despite no Ca2+ influx via the Ca2+ uniporter. The DeltaPsi(m) dissipation by FCCP accelerated calcein leakage from mitochondria in a cyclosporin A (CsA)-sensitive manner, which indicates that DeltaPsi(m) dissipation opened the mitochondrial permeability transition pore (mPTP). After FCCP addition, inhibition of the mPTP by CsA caused further [Ca2+](m) reduction; however, inhibition of mitochondrial Na+/Ca2+ exchange (mitoNCX) by a Na+-free solution abolished this [Ca2+](m) reduction. Cytosolic Na(+) concentrations that yielded one-half maximal activity levels for mitoNCX were 3.6 mM at normal DeltaPsi(m) and 7.6 mM at DeltaPsi(m) dissipation. We conclude that 1) the mitochondrial Ca2+ uniporter accumulates Ca2+ in a manner that is dependent on DeltaPsi(m) at the physiological range of [Ca2+](c); 2) DeltaPsi(m) dissipation opens the mPTP and results in Ca2+ influx to mitochondria; and 3) although mitoNCX activity is impaired, mitoNCX extrudes Ca2+ from the matrix even after DeltaPsi(m) dissipation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app