JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung.

Pseudomonas aeruginosa uses a type III secretion system to promote development of severe disease, particularly in patients with impaired immune defenses. While the biochemical and enzymatic functions of ExoU, ExoS, and ExoT, three effector proteins secreted by this system, are well defined, the relative roles of each protein in the pathogenesis of acute infections is not clearly understood. Since ExoU and ExoS are usually not secreted by the same strain, it has been difficult to directly compare the effects of these proteins during infection. In the work described here, several isogenic mutants of a bacterial strain that naturally secretes ExoU, ExoS, and ExoT were generated to carefully evaluate the relative contribution of each effector protein to pathogenesis in a mouse model of acute pneumonia. Measurements of mortality, bacterial persistence in the lung, and dissemination indicated that secretion of ExoU had the greatest impact on virulence while secretion of ExoS had an intermediate effect and ExoT had a minor effect. It is of note that these results conclusively show for the first time that ExoS is a virulence factor. Infection with isogenic mutants secreting wild-type ExoS, ExoS defective in GTPase-activating protein (GAP) activity, or ExoS defective in ADP-ribosyltransferase activity demonstrated that the virulence of ExoS was largely dependent on its ADP-ribosyltransferase activity. The GAP activity of this protein had only a minor effect in vivo. The relative virulence associated with each of these type III effector proteins may have important prognostic implications for patients infected with P. aeruginosa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app