Neurodegenerative alterations in the nigrostriatal system of trkB hypomorphic mice
Vandana Zaman, Matthew E Nelson, Greg A Gerhardt, Baerbel Rohrer
Experimental Neurology 2004, 190 (2): 337-46
15530873
Brain-derived neurotrophic factor (BDNF) acts through the neurotrophin receptor TrkB and promotes survival and differentiation of dopaminergic ventral mesencephalic neurons. To further evaluate the role of TrkB in the nigrostriatal pathway, we studied neurotrophin levels, dopamine metabolism, and morphology of dopaminergic neurons of the substantia nigra (SN-DA) in young adult hypomorphic trkB mice (trkBfbz/fbz), which express only approximately 25% of wild type levels of TrkB. Tyrosine hydroxylase immunostaining revealed altered morphology of SN-DA neurons in trkBfbz/fbz when compared to wild type mice, in particular a significant enlargement of nuclear size. Cell counts revealed a pronounced loss of SN-DA neurons in these mice. Measurement of monoamine levels by high performance liquid chromatography (HPLC) showed that dopamine (DA) levels in the target field (striatum) were significantly elevated in trkBfbz/fbz compared to trkB+/fbz and wild type mice (P < 0.05), without altering DA turnover. Likewise, enzyme-linked immunosorbent assay (ELISA) for neurotrophic factors measurement showed that BDNF levels were increased in the striatum (P < 0.01) and frontal cortex (P < 0.005) of trkBfbz/fbz mice, but not in the SN when compared to trkB+/fbz and wild type mice. These data suggest that elevated neurotransmitter and neurotrophic factor levels might be a compensatory mechanism following dopaminergic cell loss in the SN. Thus, TrkB-activation seems essential for the maintenance of the nigrostriatal dopaminergic system.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.