JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni.

The transmission dynamics of Rocky Mountain spotted fever in Montana appears to be regulated by Rickettsia peacockii, a tick symbiotic rickettsia that interferes with transmission of virulent Rickettsia rickettsii. To elucidate the molecular relationships between the two rickettsiae and glean information on how to possibly exploit this interference phenomenon, we studied a major rickettsial outer membrane protein gene, ompA, presumed to be involved in infection and pathogenesis of spotted fever group rickettsiae (SFGR) but which is not expressed in the symbiont. Based on PCR amplification and DNA sequence analysis of the SFGR ompA gene, we demonstrate that R. peacockii is the most closely related of all known SFGR to R. rickettsii. We show that R. peacockii, originally described as East Side agent in Dermacentor andersoni ticks from the east side of the Bitterroot Valley in Montana, is still present in that tick population as well as in D. andersoni ticks collected at two widely separated locations in Colorado. The ompA genes of R. peacockii from these locations share three identical premature stop codons and a weakened ribosome binding site consensus sequence relative to ompA of R. rickettsii. The R. peacockii ompA promoter closely resembles that of R. rickettsii and is functional based on reverse transcription-PCR results. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting showed that OmpA translation products were not detected in cultured tick cells infected with R. peacockii. Double immunolabeling studies revealed actin tail structures in tick cells infected with R. rickettsii strain Hlp#2 but not in cells infected with R. peacockii.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app