Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution: a TD-DFT quantum mechanical study.

Here we present the first computations of fluorescence spectra in aqueous solution at an accurate quantum mechanical level. From a methodological point of view, our study shows that by only taking into account both bulk effects and explicit solvent molecules it is possible to reproduce solvent effects on the energy and the intensities of the electronic spectra, especially for what concerns pi/pi* transition. The computed absorption and fluorescence spectra are in a good agreement with the available experimental results. The energy ordering between the lowest energy n-pi* and the pi/pi* transitions in uracil strongly depends on the nature of the embedding medium. The geometry of the first solvation shell is remarkably sensitive to the specific electronic state, suggesting that solvent degrees of freedom can act as S1/S2 coupling modes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app