Characterization of a closed femur fracture model in mice

Michaele B Manigrasso, J Patrick O'Connor
Journal of Orthopaedic Trauma 2004, 18 (10): 687-95

OBJECTIVES: The goal of this study was to develop and characterize a closed femur fracture model for mice that can be used for the molecular and genetic analysis of fracture healing.

STUDY DESIGN: Longitudinal time study of species-specific fracture healing.

METHODS: A protocol was developed for creating reproducible, closed femur fractures in mice. Impending fractures were stabilized by retrograde insertion of a 0.01-inch-diameter, stainless steel wire into the intramedullary canal. The intramedullary wire was held in place with a wedge made from the first 2 mm of a 30-gauge needle. Fractures were produced by 3-point bending. Fracture healing was assessed by radiography, histology, and torsional mechanical testing.

RESULTS: The mouse femur fracture technique produced good results with minimal loss of animals. Of the 246 mice used in the study, 22 mice were excluded due to poor fracture quality (8), loss of fracture stabilization (6), or to anesthesia death (8). Radiography showed a consistent pattern of fracture healing between mice with peak fracture callus volume evident at 10 (15 mice) to 14 days (18 mice) after fracture. Fracture bridging was apparent in all 3-week postfracture radiographs (35 mice). Histologic examination of 117 specimens at 9 time points showed chondrocyte differentiation within the fracture callus by 7 days after fracture, endochondral ossification occurring by 10 days after fracture, and bone remodeling evident as early as 3 weeks after fracture. Despite radiologic and histologic evidence of fracture bridging after 3 weeks, torsional mechanical testing of 68 mice at 3, 4, 6, and 12 weeks after fracture (group size of 15 to 18 mice at each time point) indicated that significant increases in structural or material strength did not occur until 6 to 12 weeks after fracture.

CONCLUSIONS: Femur fracture healing in mice follows a typical endochondral ossification pathway with fracture bridging occurring approximately 1 week faster in mice than rats. This fracture model is amenable to the molecular and genetic analysis of fracture healing using different inbred, transgenic, and knockout strains of mice.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"