COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors.

Among the different steroids found in the brain, pregnenolone sulfate (3beta-hydroxy-5-pregnen-20-one-3-sulfate; PREGS) is known to enhance hippocampal-associated memory. The present study employs rat hippocampal slices to investigate the ability of PREGS to modulate long-term potentiation (LTP), a phenomenon considered as a model of synaptic plasticity related to memory processes. LTP (3 x 100 Hz/1 sec within 2 min), implicated essentially glutamatergic transmission, for which the different synaptic events could be pharmacologically dissociated. We show that PREGS enhances LTP in CA1 pyramidal neurons at nanomolar concentrations and exhibits a bell-shaped concentration-response curve. The maximal effect of PREGS on both induction and maintenance phases of LTP is observed at 300 nM and requires 10 min of superfusion. Although PREGS does not change the N-methyl-D-aspartate (NMDA) component of the field potentials (fEPSPs) isolated in the presence of 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in Mg2+-free artificial cerebrospinal fluid, PREGS does enhance the response induced by NMDA application (50 microM, 20 sec). PREGS does not modify the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component of the fEPSPs isolated in the presence of 100 microM DL-2-amino-7-phosphopentanoic acid (DL-AP5) or its potentiation induced by a single tetanic stimulation and the response induced by AMPA application (10 microM, 10 sec). Furthermore, PREGS does not affect the recurrent inhibition of the fEPSPs mediated by gamma-aminobutyric acid type A (GABA(A)) receptor. In conclusion, this study shows the ability of PREGS to enhance LTP in CA1 by accentuating the activity of NMDA receptors. This modulation of LTP might mediate the steroid-induced enhancement of memory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app