OPEN IN READ APP
LETTER

Prediction and identification using wavelet-based recurrent fuzzy neural networks

Cheng-Jian Lin, Cheng-Chung Chin
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 2004, 34 (5): 2144-54
15503511
This paper presents a wavelet-based recurrent fuzzy neural network (WRFNN) for prediction and identification of nonlinear dynamic systems. The proposed WRFNN model combines the traditional Takagi-Sugeno-Kang (TSK) fuzzy model and the wavelet neural networks (WNN). This paper adopts the nonorthogonal and compactly supported functions as wavelet neural network bases. Temporal relations embedded in the network are caused by adding some feedback connections representing the memory units into the second layer of the feedforward wavelet-based fuzzy neural networks (WFNN). An online learning algorithm, which consists of structure learning and parameter learning, is also presented. The structure learning depends on the degree measure to obtain the number of fuzzy rules and wavelet functions. Meanwhile, the parameter learning is based on the gradient descent method for adjusting the shape of the membership function and the connection weights of WNN. Finally, computer simulations have demonstrated that the proposed WRFNN model requires fewer adjustable parameters and obtains a smaller rms error than other methods.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
15503511
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"