JOURNAL ARTICLE
The effects of estrogen on indices of skeletal muscle tissue damage after eccentric exercise in postmenopausal women.
Fiziologiia Cheloveka 2004 July
This study examined if estrogen (E) usage (in the form of hormone replacement therapy [HRT]) has a protective effect on skeletal muscle damage in postmenopausal women. Nine postmenopausal women (age 55.2 +/- 9.9 [mean +/- SD]) performed two exercise sessions at 70% of their maximal heart rate on HRT (E-HI) and without HRT (E-LO; following a 28-45 day HRT washout). All subjects followed a condition order of E-HI then E-LO with at least 42 days between exercise sessions. Serum creatine kinase (CK), perceived delayed onset muscle soreness (DOMS), and maximal quadriceps isometric force (MIF) were taken pre-exercise, 24, 48 and 72-hr post exercise. E-HI and E-LO conditions produced a rise in CK (p < 0.001) after exercise; but CK after E-HI was greater than in E-LO (p < 0.001) at 24 hours and at 48 hours. DOMS was significantly elevated at 24, 48, and 72-hr post each exercise session (p < 0.05). The greatest peak DOMS score occurred during the E-HI condition. MIF was similarly reduced after each exercise session (p < 0.05). These results suggest elevated E does not offer a protective effect to skeletal muscle; however, design limitations (i.e., condition order) confound the present data. Interestingly, an association between peak-CK during the E-LO condition and the number of washout days (r = +0.707, p < 0.05) between conditions existed. This suggests a longer washout period may be necessary to elucidate the actual E effects on skeletal muscle. These findings suggest that more work correcting for the present design limitations is warranted on this topic.
Full text links
Trending Papers
Diabetic kidney disease in type 2 diabetes: a consensus statement from the Swiss Societies of Diabetes and Nephrology.Swiss Medical Weekly 2023 January 7
Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment.Frontiers in Immunology 2022
Migraine.Annals of Internal Medicine 2023 January 11
Long COVID: major findings, mechanisms and recommendations.Nature Reviews. Microbiology 2023 January 14
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app