COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue.

Stearoyl-CoA desaturase (SCD) catalyzes the synthesis of oleate (C18:1) and palmitoleate (C16:1), which are the main monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters, and cholesterol esters. Previously, we showed that SCD1 deficiency elevates insulin-signaling components and downregulates protein-tyrosine phosphatase-1B (PTP-1B) in muscle, a major insulin-sensitive tissue. Here we found that, in brown adipose tissue (BAT), another insulin-sensitive tissue, the basal tyrosine phosphorylations of insulin receptor (IR) and IR substrates (IRS-1 and IRS-2) were upregulated in SCD1(-/-) mice compared with wild-type mice. The association of IRS-1 and IRS-2 with the alpha-p85 subunit of phosphatidylinositol 3-kinase as well as Akt-Ser(473) and Akt-Thr(308) phosphorylation is also elevated in the SCD1(-/-) mice. The mRNA expression, protein levels, and activity of PTP-1B implicated in the attenuation of the insulin signal are reduced in the SCD1(-/-) mice. The content of GLUT4 in the plasma membrane increased 2.5-fold, and this was accompanied by a 6-fold increase in glucose uptake in BAT of SCD1(-/-) mice. The increased glucose uptake was associated with higher glycogen synthase activity and glycogen accumulation. In the presence of insulin, [U-(14)C]glucose incorporation into glycogen was increased in BAT of SCD1(-/-) mice. Taken together, these studies illustrate increased insulin signaling and increased glycogen metabolism in BAT of SCD1(-/-) mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app