JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes.

All-trans retinoic acid (RA) has been implicated in mediation of cardiac growth inhibition in neonatal cardiomyocytes. However, the associated signaling mechanisms remain unclear. Utilizing neonatal cardiomyocytes, we demonstrated that RA suppressed the hypertrophic features induced by cyclic stretch or angiotensin II (Ang II). Cyclic stretch- or Ang II-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAP kinase) was dose- and time-dependently inhibited by RA. Significant inhibition was observed by 5 microm RA, from 8 to 24 h of pretreatment. This inhibitory effect was not mediated at the level of mitogen-activated protein kinase kinases (MKKs), because RA had no effect on stretch- or Ang II-induced phosphorylation of MEK1/2, MKK4, and MKK3/6. However, the phosphatase inhibitor vanadate reversed the inhibitory effect of RA on MAP kinases and protein synthesis. RA up-regulated the expression level of MAP kinase phosphatase-1 (MKP-1) and MKP-2, and the time course was correlated with the inhibitory effect of RA on activation of MAP kinases. Overexpression of wild-type MKP-1 inhibited the phosphorylation of JNK and p38 in cardiomyocytes. These data indicated that MKPs were involved in the inhibitory effect of RA on MAP kinases. Using specific RAR and RXR antagonists, we demonstrated that both RARs and RXRs were involved in regulating stretch- or Ang II-induced activation of MAP kinases. Our findings provide the first evidence that the anti-hypertrophic effect of RA is mediated by up-regulation of MKPs and inhibition of MAP kinase signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app