JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells.

Suppressor of cytokine signaling (SOCS) proteins constitute a class of negative regulators for Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. These intracellular proteins are induced by cytokine signaling, but they can also be induced by stimulation of Toll-like receptors (TLR). It has even been suggested that SOCS proteins are important negative regulators of TLR signaling. Here we have elucidated the nature of the regulatory role of SOCS in TLR signaling. Induction of SOCS-3 and cytokine-inducible Src homology 2-containing protein (CIS) by TLR stimulation was strictly dependent on MyD88 but showed differing needs in case of SOCS-1. However, induction of SOCS proteins by TLR ligands was independent of type I interferon. In macrophages overexpressing SOCS, we were not able to observe an inhibitory effect of SOCS-1, SOCS-2, SOCS-3, or CIS on prototypical TLR target genes such as tumor necrosis factor-alpha. However, we found that TLR-2, TLR-3, TLR-4, and TLR-9 stimulation induced interferon-beta (IFN-beta), which is able to exert auto- and paracrine signaling, leading to the activation of secondary genes like IP-10. SOCS-1 and, to a lesser extent, SOCS-3 and CIS were able to inhibit this indirect signaling pathway following TLR stimulation, whereas neither MAP kinase nor NF kappa B signaling were affected. However, STAT-1 tyrosine phosphorylation following TLR triggering was severely impaired by SOCS-1 overexpression. Thus, our data suggest that SOCS proteins induced by TLR stimulation limit the extent of TLR signaling by inhibiting type I IFN signaling but not the main NF kappa B pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app