Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury.

OBJECT: Spinal cord injury (SCI) is a complex pathological entity, the treatment of which requires a multipronged approach. One way to integrate different therapeutic strategies for SCI is to develop implantable scaffolds that can deliver therapies in a synergistic manner. Many investigators have developed implantable "bridges," but an important property of such scaffolds--that is, mechanical compatibility with host tissues--has been neglected. In this study, the authors evaluated the results of implanting a mechanically matched hydrogel-based scaffold to treat SCI.

METHODS: A nonbiodegradable hydrogel, poly(2-hydroxyethylmethacrylate) (PHEMA), was engineered using thermally initiated free radical solution polymerization. Two groups of 12 adult Sprague-Dawley rats underwent partial cervical hemisection injury followed by implantation of either PHEMA or PHEMA soaked in 1 microg of brain-derived neurotrophic factor (BDNF). Four rats from each group were killed 1, 2, or 4 weeks after induction of the injury. Immunofluorescence staining was performed to determine the presence of scarring, cellular inflammatory responses, gliosis, angiogenesis, and axonal growth in and around the implanted scaffolds.

CONCLUSIONS: The implanted PHEMA with 85% water content had a compressive modulus of 3 to 4 kPa, which matched the spinal cord. Implanted PHEMA elicited modest cellular inflammatory responses that disappeared by 4 weeks and minimal scarring was noted around the matrix. Considerable angiogenesis was observed in PHEMA, and PHEMA soaked in BDNF promoted axonal penetration into the gel. The authors conclude that mechanically engineered PHEMA is well accepted by host tissues and might be used as a platform for sustained drug delivery to promote axonal growth and functional recovery after SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app