Add like
Add dislike
Add to saved papers

A comparison of structure and stability between the group 11 halide tetramers M4X4 (M = Cu, Ag, or Au; X = F, Cl, Br, or I) and the group 11 chloride and bromide phosphanes (XMPH3)4.

Inorganic Chemistry 2004 October 19
The tetramers of the group 11 (I) halides, M(4)X(4) (M = Cu, Ag, or Au; X = F, Cl, Br, or I), and corresponding group 11 (I) phosphanes, chloride and bromide (XMPH(3))(4) (X = Cl or Br), are investigated by the density functional theory. All coinage metal(I) halide tetramers adopt squarelike ring structures with an out-of-plane distorted (butterfly) D(2d) symmetry. These structures are much lower in energy than the more compact cubelike T(d) arrangements, which maximize dipole-dipole interactions and more closely resemble the solid-state structures of the copper and silver halides. Phosphine coordination completely changes the structures of these M(4)X(4) clusters. The copper(I) and silver(I) phosphane chloride and bromide tetramers adopt a heterocubane structure, slightly preferred over a step (ladder-type)-cluster structure well-known in the coordination chemistry of such compounds. In stark contrast, gold(I) phosphane chloride and bromide tetramers prefer assemblies of linear XAuPH(3) units with direct gold-gold contacts, resulting in a square planar, centered trigonal planar, or tetrahedral gold core.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app