Add like
Add dislike
Add to saved papers

Cell cytometry with a light touch: sorting microscopic matter with an optical lattice.

Lab-on-a-chip design is a key technology for increasing both the reliability and the functionality of many different preparation and diagnostic techniques in biomedicine. The drive towards ever more integrated lab-on-a-chip designs requires increasingly complex microfluidic systems. In order to build these systems, non-invasive actuators such as pumps, filters and mixers are required. We have demonstrated microfluidic sorting based on a 3D interference pattern, formed from multiple coherent laser beams, which has the potential to fulfil all the above criteria. By interfering five laser beams from a fibre laser at 1070 nm, we have formed a 3D optical lattice. When particles flow through the optical lattice their trajectories depend upon the force exerted on the particle by the optical lattice, in combination with the drag force exerted by the fluid flow. Hence, with the strength of a particle's interaction with the lattice determining the total force exerted upon it, its trajectory is determined by its physical properties. These properties include refractive index, size and shape, giving a range of criteria with which to sort an analyte. We have shown separation at 45 degrees of polymer from silica microspheres (by refractive index), the separation of protein microcapsules and the sorting of erythrocytes from lymphocytes. The interference pattern can be tailored to the particles and if a blockage occurs, the laser can simply be switched off, unlike solid-state micro-sorters, so that no jamming occurs. Efficiencies in excess of 95% have been achieved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app