Clinical Trial
Controlled Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Influences of sildenafil on lung function and hemodynamics in patients with chronic heart failure.

BACKGROUND: Chronic heart failure (CHF) may be associated with a disordered nitric oxide (NO)-mediated regulation of the pulmonary vessel tone and permeability and of the gas transfer across the alveolar-capillary membrane. Whether enhancement of NO availability is beneficial with regard to these functions has not been explored. Phosphodiesterase 5 inhibitors, such as sildenafil, may provide a tool with which to test this possibility.

METHODS: In 10 patients with CHF and 10 normal subjects, before and at 60 minutes after sildenafil (50 mg) or placebo, we measured left ventricular ejection fraction, pulmonary hemodynamics, lung diffusion capacity for carbon monoxide and its alveolar-capillary membrane and blood capillary volume subcomponents, and flow-mediated brachial artery dilation (FMD) during reactive hyperemia to distal circulatory arrest (an indirect index of NO-mediated endothelial function).

RESULTS: In patients with CHF, sildenafil caused no variations in ejection fraction, cardiac index, wedge pulmonary pressure, and blood capillary volume; it decreased pulmonary artery systolic (-21.6%) and diastolic (-31.8%) pressure and arteriolar resistance (-36.9%); and it increased lung diffusion capacity for carbon monoxide (+11.2%), diffusing capacity of the alveolar-capillary membrane (+10.6%), and FMD (from +8.3% to +13.4%). All changes were significant at P < .01. None of these effects was observed in healthy subjects. Placebo was ineffective in both patients and control subjects.

CONCLUSION: This study provides the novel information that, in patients with CHF, phosphodiesterase 5 inhibition with sildenafil ameliorates the pulmonary hemodynamics and reduces the impedance of the alveolar-capillary interface, even if left ventricular filling pressure and function remain steady. The associated improvement in FMD at the periphery substantiates the possibility that an enhancement in NO release may underlie these effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app