JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Recombinant HLA-G5 and -G6 drive U937 myelomonocytic cell production of TGF-beta1.

Throughout human pregnancy, activated maternal macrophages producing anti-inflammatory cytokines comprise a stable cell population in the uterus. This organ is also massively infiltrated with semiallogeneic, placenta-derived, invasive cytotrophoblast cells, which produce membrane and soluble isoforms of human leukocyte antigen (HLA)-G. Here, we investigated the possibility that two soluble isoforms of HLA-G, HLA-G5 and -G6, program macrophage production of cytokines. The model system consisted of human U937 myelomonocytic cells treated with phorbol 12-myristate 13-acetate (PMA) and interferon-gamma (IFN-gamma), which induced differentiation and activation but did not affect their viability or decrease their expression of the two inhibitory immunoglobulin-like transcript (ILT) receptors for HLA-G, ILT2 and ILT4. Exposure of the PMA/IFN-gamma-treated U937 cells to increasing concentrations of recombinant HLA-G5 or -G6 (rG5 and rG6) stimulated effects common to the two isoforms. High doses of both significantly decreased interleukin (IL)-10 and dramatically increased transforming growth factor-beta1. Differential effectiveness between the isoforms was demonstrated in dose-response studies, as was differential binding to ILT2 and ILT4 in receptor-blocking studies. No effects on production of IL-4, IL-1 receptor antagonist, IL-15, tumor necrosis factor alpha, IL-1beta, or IL-6 were observed. Collectively, the results are consistent with the postulate that environmental programming of decidual macrophages may be dictated in part by their proximity to soluble HLA-G-producing fetal cytotrophoblast cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app