Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes.

Human keratinocytes undergo apoptosis following treatment with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) via surface-expressed TRAIL receptors 1 and 2. In addition, TRAIL triggers nonapoptotic signaling pathways including activation of the transcription factor NF-kappaB, in particular when TRAIL-induced apoptosis is blocked. The intracellular protein cFLIP(L) interferes with TRAIL-induced apoptosis at the death-inducing signaling complex (DISC) in many cell types. To study the role of cFLIP(L) in TRAIL signaling, we established stable HaCaT keratinocyte cell lines expressing varying levels of cFLIP(L). Functional analysis revealed that relative cFLIP(L) levels correlated with apoptosis resistance to TRAIL. Surprisingly, cFLIP(L) specifically blocked TRAIL-induced NF-kappaB activation and TRAIL-dependent induction of the proinflammatory target gene interleukin-8. Biochemical characterization of the signaling pathways involved showed that apoptosis signaling was inhibited at the DISC in cFLIP(L)-overexpressing keratinocytes, although cFLIP(L) did not significantly impair enzymatic activity of the receptor complex. In contrast, recruitment and modification of receptor-interacting protein was blocked in cFLIP(L)-overexpressing cells. Taken together, our data demonstrate that cFLIP(L) is not only a central antiapoptotic modulator of TRAIL-mediated apoptosis but also an inhibitor of TRAIL-induced NF-kappaB activation and subsequent proinflammatory target gene expression. Hence, cFLIP(L) modulation in keratinocytes may not only influence apoptosis sensitivity but may also lead to altered death receptor-dependent skin inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app