Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Colonic adenocarcinomas rapidly induced by the combined treatment with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and dextran sodium sulfate in male ICR mice possess beta-catenin gene mutations and increases immunoreactivity for beta-catenin, cyclooxygenase-2 and inducible nitric oxide synthase.

Carcinogenesis 2005 January
Heterocyclic amines are known to be important environmental carcinogens in several organs including the colon. The aim of this study was to induce colonic epithelial malignancies within a short-term period and analyze the expression of cycooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and beta-catenin, and mutations of beta-catenin gene in induced tumors. Male Crj: CD-1 mice were given a single i.g. administration (200 mg/kg body wt) of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) followed by 2% dextran sodium sulfate (DSS) in the drinking water for a week. The expression of beta-catenin, COX-2 and iNOS was immunohistochemically assessed in colonic epithelial lesions and the beta-catenin gene mutations in colonic adenocarcinomas induced were analyzed by the single strand conformation polymorphism method, restriction enzyme fragment length polymorphism and direct sequencing. At week 16, a high incidence of colonic neoplasms with dysplastic lesions developed in mice that received PhIP and DSS, but only a few developed in those given MeIQx and DSS. Immunohistochemically, the adenocarcinomas induced were all positive for three proteins. All seven adenocarcinomas induced by PhIP and DSS have mutations. The findings suggest that DSS exerts powerful tumor-promoting effects on PhIP-initiated colon carcinogenesis in mice and this mouse model is useful for investigating environment-related colon carcinogenesis within a short-term period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app