RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nasal airflow diagnosis--comparison of experimental studies and computer simulations.

The lack of suited diagnostic tools providing insight into patient specific flow characteristics of the nasal airflow is one of the main problems in functional diagnosis. Diagnostic methods currently used do not provide the necessary information for flow analysis. But the flow distribution is essential for a physiological respiration, in particular for cleaning, moistening and tempering of the inhaled air as well as for the olfactory function of the nose. To overcome this current situation a cooperation project of the ENT surgeons and computer graphic engineers was established to develop the computer assisted planning system STAN (Simulation Tool for Airflow in the human Nose) combining Computer Fluid Dynamics (CFD) with advanced Computer Graphic Technology. The idea of the STAN system is to perform patient specific airflow simulations in the patient's nasal cavities. Therefore a geometrical model of the nasal airways is derived from the patient's tomography scans. A discretization of the surrounded flow volume is made by a computational grid. To establish the flow simulation Finite Element Methods are performed on the grid. A tailored visualization is offered to the surgeon that overlaps the flow pattern to the patient's tomography data shown in the coronal, sagittal and transversal plane. The surgeon can not only analyze the patient's current respiratory situation he has also the possibility to describe the planned surgical intervention. The goal is to simulate the flow distribution that can be expected after the surgical intervention and to offer a possibility to validate various surgical strategies. To verify the simulation results experimental investigations and measurements are made in nasal models. Silicon Models of patient's nose channels are made to analyze flow characteristics. The CT or MR scans of the same patients are used as input data for the simulation. The experimental outcome is compared to the simulation results to validate this diagnostic approach.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app