JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores.

Self-assembly of robust perylenediimide chromophores is used to produce an artificial light-harvesting antenna structure that in turn induces self-assembly of a functional special pair that undergoes ultrafast, quantitative charge separation. The structure consists of four 1,7-(3',5'-di-tert-butylphenoxy)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (PDI) molecules attached to a single 1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-perylene-3,4:9,10-bis(carboximide) (5PDI) core, which self-assembles to form (5PDI-PDI4)2 in toluene. The system is characterized using both structural methods (NMR, SAXS, mass spectroscopy, and GPC) and photophysical methods (UV-vis, time-resolved fluorescence, and femtosecond transient absorption spectroscopy). Energy transfer from (PDI)2 to (5PDI)2 occurs with tau = 21 ps, followed by excited-state symmetry breaking of 1*(5PDI)2 to produce 5PDI*+-5PDI*- quantitatively with tau = 7 ps. The ion pair recombines with tau = 420 ps. Electron transfer occurs only in the dimeric system and does not occur in the disassembled monomer, thus mimicking both antenna and special pair function in photosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app