Add like
Add dislike
Add to saved papers

Degradation and adsorption of fosthiazate in soil.

Adsorption and degradation behavior of a pesticide in soil has a strong effect on its environmental fate as well as efficacy for pest control. Fosthiazate is an organophosphate compound that is currently under development as a nonfumigant nematicide. In this study, we evaluated adsorption and degradation kinetics of fosthiazate in three U.S. soils with different properties. Adsorption of fosthiazate in mineral soil was negligibly weak but appeared to increase with soil organic matter (OM) content. The half-life (T(1/2)) of fosthiazate ranged from 0.5 to 1.5 months in nonsterile soils but was prolonged to 1-3 months after sterilization. Degradation of fosthiazate in soil appeared to be caused by both chemical and microbial transformations. The persistence of fosthiazate generally decreased with increasing soil pH, but increased with increasing soil OM and clay contents. This results suggest that fosthiazate may have an enhanced leaching potential in acidic soils with low OM content, and its efficacy in high pH soils may not last as long as in neutral soils because of faster degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app