JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sharp-1/DEC2 inhibits skeletal muscle differentiation through repression of myogenic transcription factors.

Skeletal muscle differentiation is regulated by the basic-helix-loop-helix (bHLH) family of transcription factors. The myogenic bHLH factors form heterodimers with the ubiquitously expressed bHLH E-proteins and bind E-box (CANNTG) sites present in the promoters of several muscle-specific genes. Our previous studies have shown that the bHLH factor Sharp-1 is expressed in skeletal muscle and interacts with MyoD and E-proteins. However, its role in regulation of myogenic differentiation remains unknown. We report here that endogenous Sharp-1 is expressed in proliferating C2C12 myoblasts and is down-regulated during myogenic differentiation. Constitutive expression of Sharp-1 in C2C12 myoblasts promotes cell cycle exit causing a decrease in cyclin D1 expression but blocks terminal differentiation. Although MyoD expression is not inhibited, the induction of differentiation-specific genes such as myogenin, MEF2C, and myosin heavy chain is impaired by Sharp-1 overexpression. We demonstrate that the interaction of Sharp-1 with MyoD and E-proteins results in reduced DNA binding and transactivation from MyoD-dependent E-box sites. Re-expression of MyoD approximately E47 rescues the differentiation defect imposed by Sharp-1, suggesting that myogenic bHLH factors function downstream of Sharp-1. Our data suggest that protein-protein interactions between Sharp-1, MyoD, and E47 resulting in interference with MyoD function underlies Sharp-1-mediated repression of myogenic differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app