Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Self-renewal of teratocarcinoma and embryonic stem cells.

Oncogene 2004 September 21
Pluripotent stem cells derived from preimplantation embryos, primordial germ cells or teratocarcinomas are currently unique in undergoing prolonged symmetrical self-renewal in culture. For mouse embryonic stem (ES) cells, self-renewal is dependent on signals from the cytokine leukaemia inhibitory factor (LIF) and from either serum or bone morphogenetic proteins (BMPs). In addition to the extrinsic regulation of gene expression, intrinsic transcriptional determinants are also required for maintenance of the undifferentiated state. These include Oct4, a member of the POU family of homeodomain proteins and a second recently identified homeodomain protein, Nanog. When overexpressed, Nanog allows ES cells to self-renew in the absence of the otherwise obligatory LIF and BMP signals. Although Nanog can act independent of the LIF signal, a contribution of both pathways provides maximal self-renewal efficiency. Nanog function also requires Oct4. Here, we review recent progress in ES cell self-renewal, relate this to the biology of teratocarcinomas and offer testable hypotheses to expose the mechanics of ES cell self-renewal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app